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ABSTRACT

Autonomous driving provides an effective way to address traffic concerns such as safety and congestion.There has
been increasing interest in the development of autonomous driving in recent years. Interest has included high-speed
driving on highways, urban driving, and navigation through less structured off-road environments. The primary
challenge in autonomous driving is developing perception techniques that are reliable under the extreme variability of
outdoor conditions in any of these environments. Roads vary in appearance. Some are smooth and well marked, while
others have cracks and potholes or are unmarked. Shadows, glare, varying illumination, dirt or foreign matter, other
vehicles, rain, and snow also affect road appearance.

This paper describes a visual processing algorithm that supports autonomous driving. The algorithm requires that
lane markings be present and attempts to track the lane markings on each of two lane boundaries in the lane of travel.
There are three stages of visual processing computation: extracting edges, determining which edges correspond to lane
markers, and updating geometric models of the lane markers. A fourth stage computes a steering command for the
vehicle based on the updated road model. All processing is confined to the 2-D image plane. No information about the
motion of the vehicle is used. This algorithm has been used as part of a complete system to drive an autonomous ve-
hicle, a High Mobility Multipurpose Wheeled Vehicle (HMMWYV.) Autonomous driving has been demonstrated on both
local roads and highways at speeds up to 100 km/h. The algorithm has performed well in the presence of non-ideal
road conditions including gaps in the lane markers, sharp curves, shadows, cracks in the pavement, wet roads, rain,
dusk, and nighttime driving. The algorithm runs at a sampling rate of 15 Hz and has a worst case processing delay time
of 150 ms. Processing is implemented under the NASA/NBS Standard Reference Model for Telerobotic Control Sys-
tem Architecture (NASREM) architecture and runs on a dedicated image processing engine and a VME-based micro-
processor system.

Keywords: autonomous driving, feature tracking, hierarchical control system architecture, image processing,
real-time processing, recursive least squares, world model

1. INTRODUCTION

Recently, there has been increasing interest in the development of autonomous vehicles. Interest has included high-
speed driving on highways, urban driving, and navigation through less structured off-road environments. The primary
challenge in autonomous driving is in developing perception techniques that are reliable under the extreme variability
of outdoor conditions in any of these environments. Roads can vary tremendously in appearance. Some are smooth
and well marked, while others are riddled with cracks and potholes or are unmarked. Shadows, glare, varying
illumination, other vehicles, rain, snow, etc. also affect road appearance.

Perception for autonomous driving has been approached with a wide variety of vision-based techniques. Classical
pattern classification techniques have received much attention. These methods usually use some combination of color
and spatial cues to label all pixels in the image as either road or non-road. Various techniques are then used to
determine a boundary that best separates the road from the rest of the scene 1* 2345 Another popular method is to
use feature tracking 7.8,9,10, 11 ‘These methods track prominent features (e.g. lane markers) from image to image.
Other approaches include image flow based methods 12, and artificial neural networks !3. In addition to vision-based
perception techniques ! 14, a 3D laser range finder is used for outdoor navigation.
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Figure 1. Processing Overview

We use a feature tracking method. Our processing consists of three successive stages of visual computation:
1) Extracting edge point position and orientation.
2) Matching extracted edge points to the road model
3) Updating the road model
The fourth stage of processing computes a steering command for the vehicle based on the updated road modelS.

The input to Stage (1) (Figure 1) consists of video images that are digitized from a single CCD camera mounted
above the HMMWYV’s cab.The input consists of road scenes of a driver’s view of the road ahead as a vehicle is driven
along both highways and rural roads. Stages (2) and (3) require an explicit geometric model of the road. Stage (2)
attempts to match the extracted edge points obtained from stage (1) with the road model. Stage (3) updates the geo-
metric model of the road using the matched edge points.

We choose not to reconstruct the 3D scene at this level of processing. Although a 3D model of the road is necessary
to command navigation of the vehicle, we believe this transformation from 2D to 3D should be independent of the
feature trackmg feedback loop as shown in Figure 2. In this way, our approach differs from that taken by other feature
trackers & 7 8. Their approaches convert the matched features from 2D to 3D before updating the road model. The 3D
road model is then backprojected into 2D for the matching process as shown in Figure 3. By updating the model in 2D,
our feature tracking algorithm is unaffected by any errors, approximations, or assumptions that might be incurred in
doing 3D reconstruction and tackprojection.
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Figure 2. Feature Tracking in 2D

Our method for updating the model is also unique. We use an exponentially weighted recursive least square fit
(described in section 2.5) to update the parameters of our geometric road model. The appeal of this method is in its



weighting of data. The weight assigned to the data from each image depends on the number of data points matched
between the image and the model. If the lane marking momentarily disappears, few edge points will match the model,
and the weight of this data will be relatively insignificant compared to data from an image in which lane markings are
visible. In addition, because the variance of a least squares estimate decreases as the number of data points

increases 1% 16, we are, in effect, giving more weight to data in which there is a higher confidence.

Other approaches do not seem to account for the confidence of data when combining data temporally. For example,
Dickmanns et.al.% 7 first computes least squares estimates of a set of geometric parameters using only the data from
the current image. These parameters are then smoothed over time using a Kalman filter. The weight assigned to these
parameters when they are smoothed seems to be independent of the quality of their least squares fit. In the Kalman
filter formulation, the weighting of new data is controlled by the relative choices of the model covariance and the
measurement covariance. (Dickmanns and Mysliwetz ct.al.)6' 7 do not explain how these covariances are modeled or
chosen, or even if they are chosen to vary as a function of time. If they are chosen as constants, an image yielding a
weak edge would be given the same weight as one yielding a strong edge. This can result in a spurious data point that
carries significant weight when lane markers disappear (either between stripes or at an intersection.)
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Figure 3. Feature Tracking in 3D

In Section 2, we describe our road following algorithm. Section 3 contains a description of our hardware and
development environment. Section 4 describes the performance of our system. Section 5 summarizes our experiments
and presents future development plans.

2. ROAD FEATURE TRACKING ALGORITHM
In this section we describe our road feature tracking (following) algorithm in detail. In 2.1 we describe our
geometric representation of the road. In 2.2, we describe how the model is initialized to a road scene. In 2.3 we describe
the edge extraction algorithm. In 2.4 we describe the algorithm that matches edge points with the road model. In 2.5
we describe the algorithm that updates the road model.

2.1. Road model

We model the road using the left and right lane boundaries in the lane of travel. Physically, these boundaries
correspond to the white or yellow lane markers painted on the road. They may also be solid or striped lines. We
represent each of these lane boundaries by a quadratic model (equation 1) in the image plane:

X = a;+ayy+azy? 1
The parameters, a;, a,, a3, govern the shape of this model.

2.2. Initial conditions

Our algorithm requires an accurate model of the road. Initially, this model is established by a teleoperator who
manually positions models of both lane markers to align them with the appearance of the lane boundaries in the image.
In this way, the teleoperator assigns the initial values of the parameters a,, a,, a3 for both quadratics. The models of



the lane markers are represented by graphic overlays on the video image.

2.3. Edge extraction

The first processing step performs edge extraction on the input scene (stage (1) in Figure 1). For every point in the
image, edge magnitude and edge orientation are computed using a two-dimensional 3 X 3 spatial gradient operator.
The direction, 6, of each point in the image is defined to be perpendicular to the direction of the gradient of the intensity
function f{x,y) at that point:

(VyD(xy) =

0= tan ————
VDY 2 v 2
The magnitude of each edge pixel, mag, is given by:
mag = (V) (x, ) + (Vyh)(x, y) ©)

Using a non-maximum suppression algorithm 7, those edge pixels whose magnitude is greatest in the direction across
the edge are selected as edge points. A binary edge image is produced by thresholding the edge points. The threshold
level is set to a value which removes weak edges and edges caused by camera noise. We have empirically found a
threshold value of 8 in a grey level range of 0 to 255 to be effective for our application. The output from this processing
stage consists of a list of the image coordinates of all edge points above the threshold value and the orientation of these
points. It should be noted, at this stage of operation, no effort is made to distinguish road edges from other edges
present in the input image. Execution of this algorithm is completely data-driven.

To reduce the amount of data processed by algorithms in stages (2) and (3) in Figure 1, we exclude all edges that
fall outside a window of interest. This window of interest is chosen to include the entire portion of the visible road but
to exclude, as much as possible, the rest of the image (e.g. the hood of the vehicle, trees, grassy shoulders, houses, etc.)
Figure 4a is a typical image of a road viewed from a camera mounted on a vehicle. Figure 4b is an image of all the
edge points found above the threshold value. Figure 4c is a window of interest mask. Figure 4d represents the results
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of masking the edge image with the window of interest. During execution, the lateral position of the window of interest
shifts in order to keep it centered on the center of the road. In addition to centering, the shape of the window of interest
changes as a function of the predicted road curvature. We are currently using seven masks: one mask representing zero
road curvature (figure 4b), three masks representing increasing road curvature to the left, and three masks representing
increasing road curvature to the right. All masks are generated off-line but are instantiated in real-time for the actual
image processing. Our mask selection algorithm changes masks when one of the lane marker models intersects with
either of the vertical boundaries of the current mask. For example, if a lane marker intersects with the left boundary,
the mask giving the next larger increment of curvature to the left is chosen.

2.4. Edge matching

In this stage of processing we match the edge data against the existing model of the road. The purpose of this edge
matching algorithm is twofold. The first purpose is to associate edge points with the appropriate lane marker. The
second purpose is to eliminate edge points that do not seem to be associated with either lane marker. For example,
shadows, pot holes, or other vehicles can appear in the selected window and will contribute to the edge information.
We wish to exclude this “spurious” edge data from the road model update computation.

The edge matching algorithm compares each edge pixel to the model of each lane marker. An edge pixel is either
accepted or rejected depending upon its similarity to the model. The labelling process is based on two criteria. The first
criterion is the two-dimensional spatial proximity of an edge point to the model. The second criterion is the similarity
of direction of the edge point with the angular orientation of the model. Figure 4e represents the output of the matching
algorithm, i.e. those edge points associated with the right lane marker.

To facilitate this process, the quadratics representing each lane marker are approximated by a set of consecutive
line segments. The conglomerate of these lines is used as the model in the matching procedure. The first step in this
procedure compares the edge direction of the candidate edge point with the angular direction of each of these model
lines:

|emode1 - edata' <8 (4)

If this angular disparity is within an acceptable range, 8, for any model line, the distance d is computed between the
point at image coordinate (x; y;) and each model line:

Apx; + By +Cp
= (A%+B]%)1/2 (5)

where(A,x + B,y + C,=0) is the general form for the kth line in the model

The minimum of these distances is used to determine if that point is less than a distance threshold, ¢, from the
model. The point is labelled as belonging to the model when both the spatial proximity and orientation conditions are
satisfied. If an edge point is chosen as belonging to one quadratic model, it is not considered as a match candidate for
the second quadratic model. In this way, we insure that any given point belongs to one model at most.

2.5. Road model update

The parameters of the road model, equation (1), are updated with an exponentially weighted recursive least squares
computation using the matched edge points as input data. It should be emphasized that in this estimation method, the
fitis based on data acquired over a sequence of images, rather than just the current image. Earlier experiments involved
separately fitting the road model to each image. The frequent inclusion of spurious data and sparse real data often
resulted in poor fits. By combining data over a sequence of images, the spurious data tends to average and the real data
reinforces itself resulting in a better fit. Probability theory calls this phenomena the law of large numbers 15 16,



The success of this method is based on the assumption that the appearance of the road changes gradually over a
sequence of images. There are, however, limits at which the assumption of continuity fails. We must, therefore, choose
a method of weighing new data with respect to old to achieve a compromise between responsiveness and robustness.
For example, if new data is weighted relatively heavily, the algorithm will be very responsive to changes in the road.
However, the algorithm will also be more susceptible to the ill-effects of noise and sparse data.If new data is weighted
less heavily, the algorithm will be more robust in the presence of noise, but more inert in responding to actual changes
in the image of the road.

In exponentially weighted recursive least squares, the trade-off between new and old data is controlled by specifying
the value of the forgetting facior, L. The weight assigned to each data point is then given by

Ao where

0.0<A<10
n is the current time
n, is the time the data was sampled.

For example, if A = 0.5, all edge points in the current image, time n,, have a weight of 1.0. All edge points in the image
read at time n_; have a weight of 0.5; edge points from time 7.5 have a weight of 0.25, etc.). Empirically we found the
values of A in the range 0.5 < A < 0.75 produced robust tracking for our road scenes.

The least squares problem of fitting a quadratic to a set of data is formulated as follows. For a set of data points
(x; y;) for i = 1 to N where N is the total number of data points, we wish to determine a;, a,, a; such that J, the residual
in x, is minimized:

N
J = 2 [x;—(ay +a2y,.+a3y?)]2 (6)

i=1

Because our data set includes edges from all previous images, where images are weighted exponentially, the residual
we minimize is given by: -

N, N, Ni2
J = Z [x;-(a, +a2y,.+a3y,?)]2+ A Z [x;-(a, +a2y,-+a3y,.2)]2+ A2 2 [x;~(a +a2y,.+a3y?)]2+ )

i=1 i=1 i=1

Each summation represents the data from one image. In this residual, the weight of image j is also a function of the
number of edge points matched, N;. An image that yields a good match with the road will exert a larger weight than
one with a poorer match. Because the variance of a least squares estimate decreases as the number of data points
increases!> 16, we are, in effect, giving more weight to data in which there is a higher confidence.

To efficiently solve equation (7) for a;, a,, a3 such that the residual is minimized, we use the square root information
filter (SRIF) algorithm % 19, The SRIF is an efficient, numerically stable, closed form solution to the least squares
problem. It is also an iterative algorithm. Data from previous images is not explicitly stored but is summarized in the
previous estimate and its covariance. After each image, this algorithm updates the estimate and a square root of its
information matrix. (The information matrix is the inverse of the covariance matrix.)

2.5.1. Road width constraint

If sufficient data are matched to both lane markers, the two lane markers are treated independently. However, a road
width constraint is used when the lane marker data are sparse for one lane marker and strong for the other lane marker.
This constraint is designed to handle the situation where one lane marker momentarily disappears. Currently a road
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width constraint is applied when the number of edge points associated to the weaker lane marker is under a predefined
threshold and the stronger lane marker exceeds the threshold. The threshold is currently set to 40 points.

Road width is modeled as a first order polynomial in the image plane:
Tw = Gy T Ay

®)
Each coefficient of this polynomial is computed from the difference of the corresponding coefficients of the two lane
marker models. This difference is then averaged over time with exponential decay. For example, for the first coeffi-
cient this gives:

alR(j)_alL(j) +Nalw(j_ 1)
1+N ©)]

ay,0) =

J - Time at which image was sampled
N - Decay factor, currently N=20

These coefficients are recomputed for each new image.

The road width constraint involves using the road width model to compute a synthetic lane marker model by adding
this offset to the location of the other lane marker model. The synthetic lane marker model is then weighted and
combined with the edge data usually used for computing the lane marker model update. The weight this synthetic lane
marker carries is a function of the number of edge points associated to lane marker versus the number of points
associated to the other lane marker.

3. HARDWARE AND DEVELOPMENTAL TESTBED

Our development environment consists of a Sun SPARC2 workstation, a Pipelined Image Processing Engine
(PIPE), a VME-based multiprocessor system, and a black and white CCD camera;.

Figure 5 shows the breakdown of processing across hardware. In this figure, the large gray rectangles represent dis-
tinct software modules. Each of these modules is labelled by its functionality (SP = sensory processing, WM = world
modeling) and level within the NASA/NBS Standard Reference Model for Telerobot Control System Architecture
(NASREM) 2, The system described in this paper is contained in a larger, multi-purpose implementation of
NASREM 21:22:23, 24 Albus, et. al.2’ proposes a complete control system architecture for intelligent vehicles.

A single black and white CCD camera mounted above the cab of a U.S. Army HMMWYV 26 is aimed to capture the
driver’s view of the road ahead. The imagery is read into PIPE which digitizes it into 8-bit grayscale images that are
242x256 pixels in size. Edge extraction is performed on the images. The Iconic-to-Symbolic Mapper (ISMAP) stage
of PIPE then converts information from an image format to a symbolic list by storing the binary edge image as a list
of pixel positions. In addition, the corresponding edge direction values are stored in the ISMAP iconic buffer where
they are mapped onto the memory of one of the microprocessors via a specialized PIPE-VME interface board. The
edge extraction and symbolic mapping operations are pipelined. They are indicated by black parallelograms in
Figure 5.

The remaining processing is divided among microprocessors in the VME backplane. Most computations --
communication with the PIPE, edge matching, updating the model, and computing a graphical overlay -- are pipelined.
The model updates for each lane marker are computed in parallel on separate processors. All inter-processor commu-

1. Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately
specify the experimental procedure. Such identification does not imply recommendation or endorsement by
NIST, nor does it imply that the materials or equipment identified are necessarily best for the purpose.



nication is done through semaphored global memory 27

The display process provides graphic overlays of the window of interest, the geometric model of the lane boundaries
and the computed lane center on the live video image. These graphic overlays are used to debug and to provide a
qualitative measure of performance. A Matrox VIP 1024 board (not shown in figure) is used to implement the graphic
overlays on the video signal.

All program development for the VME-based multiprocessor system is done on a Sun SPARC2 workstation. All
code on this system is written in the Ada programming language. Program development for PIPE is done on a personal
computer using the PIPE graphical programming language, ASPIPE 23

4. SYSTEM EVALUATION

Autonomous driving experiments using the NIST HMMWYV were performed on several roads including the NIST
campus, Great Seneca Highway in Gaithersburg, Maryland, and the Montgomery County Police Test track in Rock-
ville, Maryland. These roads contained standard lane markings such as double yellow lines, single white lines, and
dashed white lines. The algorithm performed successfully and reliably on all roads. The only failure occurred on one
portion of road where the pavement abruptly changed from dark asphalt to light cement for an overpass. The lane
markings did not provide enough contrast to be detected on the cement pavement. Otherwise, the vehicle maintained
centering in the lane of travel. It was able to successfully traverse sections in which there were significant gaps of six
to seven meters in the lane marking for small intersections and through an underpass. The roads were moderately
shadowed by surrounding trees and varied from mild curvature and hills to severe rises and drops and sharp curves on
the Montgomery County Police Test Track. Pavement quality varied significantly, including stretches of old pavement
with many cracks and discolorations. Top speeds of 100 km/h were also demonstrated. On all roads, the vehicle was
able to travel at the legal speed limit. Testing also included a wide variety of conditions including rain (wet roads),
nighttime driving with headlights, and driving at dusk into the sunlight.

The algorithm has also been widely tested using video taped road scenes. Tracking was maintained on video tapes
of roads with sharp curves, hills and moderate shadows. However, on one portion of video taped road, tracking was
temporarily lost when the vehicle travelled through a sharply curved hilly portion of road that was shadowed by a
heavily wooded area. Tracking was maintained in typical traffic situations: on-coming traffic, passing vehicles, and
traveling behind other vehicles.

The image sampling rate of our system is 15 Hz. The worst case latency is 132.8 ms. Edge extraction was performed
every 66.4 ms. The number of edge points extracted varies from scene to scene and the processing times for the algo-
rithms in stages (2) and (3) will vary depending on the number of data points present. For a representative road scene
containing approximately 300 edge points, the edge matching is performed in 20 ms and the road model update is per-
formed in 30 ms. The graphic overlay process is updated in approximately 5 ms.

5. CONCLUSIONS AND FUTURE WORK

We have described a system of algorithms that robustly follows roads that are similar to state highways. We assume
that the lane boundaries are well marked with either solid, double, or dashed lines. All visual processing is done in two
dimensional image coordinates. Processing is performed in sequential stages: extracting edges, matching edge points
to the road model, and updating the model of the road. Computation time for the image processing algorithms is
reduced by using knowledge of the road curvature to mask out non-road information. The exponentially weighted
recursive least squares algorithm used to update the road model operates in both a spatial and temporal domain. The
system update rate is 15 Hz.

Although this system performed very well under limited testing, its limitations under severe conditions were
evident. The challenge in future work is to develop algorithms of increasing reliability and to strive toward the goal of
robustness under all possible road conditions. This will involve using other visual cues such as road color, road texture,
and range for redundancy.
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